服務熱線
0755-83044319
發布時間:2023-02-09作者來源:薩科微瀏覽:2180
激光二極管也被稱為半導體激光器,通常簡稱為LD。激光二極管又可以細分為多個類別,下邊一起了解一下。
F-P(法布里-珀羅)腔LD已成為常規產品,向高可靠低價化方向發展。DFB-LD的激射波長主要由器件內部制備的微小折射光柵周期決定,依賴沿整個有源層等間隔分布反射的皺褶波紋狀結構光柵進行工作。DFB-LD兩邊為不同材料或不同組分的半導體晶層,一般制作在量子阱QW有源層附近的光波導區。這種波紋狀結構使光波導區的折射率呈周期性分布,其作用就像一個諧振控,波長選擇機構是光柵。利用QW材料尺寸效應和DFB光柵的選模作用,所激射出的光的譜線很寬,在高速率調制下可動態單縱模輸出。內置調制器的DFB-LD滿足光發射機小型、低功耗的要求。
DFB-LD多采用Ⅲ和Ⅴ族元素組成的三元化合物、四元化合物,在1550nm波段內,最成熟的材料是InGaAsP/InP。新型AIGaInAs/InP材料的研發日趨成熟,國際上僅少數幾家廠商可提供商用產品。優化器件結構,有源區為應變超晶格QW。有源區周邊一般為雙溝掩埋或脊型波導結構。有源區附近的光波導區為DFB光柵,采用一些特殊的設計,如:波紋坡度可調分布耦合、復耦合、吸收耦合、增益耦合、復合非連續相移等結構,提高器件性能。生產技術中,金屬有機化學汽相淀積MOCVD和光柵的刻蝕是其關鍵工藝。MOCVD可精確控制外延生長層的組分、摻雜濃度、薄到幾個原子層的厚度,生長效率高,適合大批量制作,反應離子束刻蝕能保證光柵幾何圖形的均勻性,電子束產生相位掩膜刻蝕可一步完成陣列光柵的制作。1550nmDFB-LD開始大量用于622Mb/s、2.5Gb/s光傳輸系統設備,對波長的選擇使DFB-LD在大容量、長距離光纖通信中成為主要光源。
同一芯片上集成多波長DFB-LD與外腔電吸收調制器的單芯片光源也在發展中。研制成功的電吸收調制器集成光源,采用有源層與調制器吸收層共用多QW結構。調制器的作用如同一個高速開關,把LD輸出變換成二進制的0和1。在一塊芯片上形成40種不同的折射光柵,波長1530--1590nm的40路調制器集成光源,信道間隔為200GHz。其開發目標是集成100個發射波長的LD陣列,以進行9.5THz超大容量的通信。
VCSEL(垂直腔面發射激光)二極管的特點如下:從其頂部發射出圓柱形射束,射束無需進行不對稱矯正或散光矯正,即可調制成用途廣泛的環形光束,易與光纖耦合;轉換效率非常高,功耗僅為邊緣發射LD的幾分之一;調制速度快,在1GHz以上;閾值很低,噪聲小;重直腔面很小,易于高密度大規模制作和成管前整片檢測、封裝、組裝,成本低。
VCSEL采用三明治式結構,其中間只有20nm、1--3層的QW增益區,上、下各層是由多層外延生長薄膜形成的高反射率為100%的布拉格反射層,由此構成諧振腔。相干性極高的激光束最后從其頂部激射出。多家廠商有1550nm低損耗窗口與低色散的可調諧VCSEL樣品展示。1310nm的產品預計在今后1--2年內上市。可調諧的典型器件是將一只普通980nmVCSEL與微光機電系統的反射腔集成組合,由曲形頂鏡、增益層、反射底鏡等構成可產生中心波長為1550nm的可調諧結構,用一個靜電控制電壓將位于支撐薄膜上的頂端反射鏡定位,改變控制電壓就可調整諧振腔體間隙尺寸,從而達到調整輸出波長的目的。在1528--1560nm范圍連續可調諧43nm,經過2.5Gb/s傳輸500km實驗無誤碼,邊模抑制優于50dB。如果發射波長在1310--1550nm之間的VCSEL能夠商業化生產,將會進一步促進光通信發展,使光網絡更加靠近家庭。已有許多公司公布了這種波長的VCSEL原型機的一些技術數據。
DBR-LD(分布布拉格反射器激光二極管)[敏感詞]代表性的是超結構光柵SSG結構。器件中央是有源層,兩邊是折射光柵形成的SSG區,受周期性間隔調制,其反射光譜變成梳狀峰,梳狀光譜重合的波長以大的不連續變化,可實現寬范圍的波長調諧。采用DBR-LD構成波長轉換器,與調制器單片集成,其芯片左側為雙穩態激光器部分,有兩個激活區和一個用作飽和吸收的隔離區;右側是波長控制區,由移相區和DBR構成。
1550nm多冗余功能可調諧DBR-LD可獲得16個頻率間隔為100GHz或32頻率間隔為50GHz的波長,隨著大約以10nm間隔跳模,可獲得約100nm的波長調諧。除保留已有的處理和封裝工藝外,還增加了納秒級的波長開關,擴大調諧范圍。
FG-LD(光纖光柵激光二極管)利用已成熟的封裝技術,將含有FG的光纖與端面鍍有增透膜的F-P腔LD耦合而成可調諧外腔結構的激光器,由LD芯片、空氣間隙、光纖前端的光纖部分組成,光學諧振腔在光柵和LD外端面之間。LD的內端面鍍有增透膜,以減小其F-P模式,FG用來反饋選模,由于其極窄的濾波特性,LD工作波長將控制在光柵的布拉格發射峰帶寬內,通過加壓應變或改變溫度的方法,調諧FG的布拉格波長,就可以得到波長可控制的激光輸出。FG-LD制作組裝相對簡單,性能卻可與DFB-LD相比擬,激射波長由FG的布拉格波長決定,因此可以精控,單模輸出功率可達10mW以上,小于2.5kHz的線寬,較低的相對強度噪聲與較寬的調諧范圍(50nm),在光通信的某些領域有可能替代DFB-LD。已進行用于2.5Gb/sx64路的信號傳輸的實驗,效果很好。
GCSR-LD(光柵耦合采樣反射激光二極管)是一種波長可大范圍調諧的LD,其結構從左往右分別為增益、耦合器、相位、反射器區域,改變其增益、耦合、相位和反射器各個部分的注入電流,就可改變其發射波長。此LD波長可調范圍約80nm,可提供322個國際電信聯盟ITU-T建議的波長表內的波長,已進行壽命試驗。
MOEMS-LD(微光機電系統激光二極管)用靜電方式控制可移動表面設定或調整光學系統中物理尺寸,進行光波的水平方向調諧。采用自由空間微光學平臺技術,控制腔鏡位置實現F-P腔腔長的變化,帶來60nm的可調諧范圍。這種結構既可作可調諧光器件,也可用于半導體激光器集成,構成可調諧激光器。
光模塊激光二極管內置MQWF-P腔LD或DFB-LD、控制電路、驅動電路,輸出光信號。其體積小,可靠性高,使用方便,在城域網、同步傳輸系統、同步光纖網絡中都大量采用2.5Gb/s光發射模塊,10Gb/s、40Gb/s處于初期試用階段,向高速化、低成本、微型化發展。利用高分子材料Polymer折射率隨溫度變化特性,加熱器改變高分子材料光柵溫度,引發其折射率和光柵節距變化,使其反射波長改變。已研制出Polymer-AWG波長可調的集成模塊,有16個波長通道,波長間隔200GHz,插損8--9dB,串擾-25dB。用一個高速調制器對每個波長進行時間調制的多波長LD正處于研制階段。這是一種全新的多波長和波長可編程光源。
友情鏈接:站點地圖 薩科微官方微博 立創商城-薩科微專賣 金航標官網 金航標英文站
Copyright ?2015-2024 深圳薩科微半導體有限公司 版權所有 粵ICP備20017602號-1