服務熱線
0755-83044319
發布時間:2022-03-17作者來源:薩科微瀏覽:2355
系統級封裝(SIP)技術從20世紀90年代初提出到現在,經過十幾年的發展,已經能被學術界和工業界廣泛接受,成為電子技術研究新熱點和技術應用的主要方向之一,并認為他代表了今后電子技術發展的方向,SIP封裝工藝作為SIP封裝技術的重要組成部分,這些年來在不斷的創新中得到了長足發展,逐漸形成了自己的技術體系,值得從事相關技術行業的技術人員和學者進行研究和學習,文章從封裝工藝角度出發,對SIP封裝制造進行了詳細的介紹,另外也對其工藝要點進行了詳細的探討。
根據國際半導體路線組織(ITRS)的定義:SiP為將多個具有不同功能的有源電子元件與可選無源器件,以及諸如MEMS或者光學器件等其他器件優先組裝到一起,實現一定功能的單個標準封裝件,形成一個系統或者子系統。
從架構上來講,SiP是將多種功能芯片,包括處理器、存儲器等功能芯片集成在一個封裝內,從而實現一個基本完整的功能。與SOC(片上系統)相對應。不同的是系統級封裝是采用不同芯片進行并排或疊加的封裝方式,而SOC則是高度集成的芯片產品。
1.1. More Moore VS More than Moore——SoC與SiP之比較
SiP是超越摩爾定律下的重要實現路徑。眾所周知的摩爾定律發展到現階段,何去何從?行業內有兩條路徑:一是繼續按照摩爾定律往下發展,走這條路徑的產品有CPU、內存、邏輯器件等,這些產品占整個市場的50%。另外就是超越摩爾定律的More than Moore路線,芯片發展從一味追求功耗下降及性能提升方面,轉向更加務實的滿足市場的需求。這方面的產品包括了模擬/RF器件,無源器件、電源管理器件等,大約占到了剩下的那50%市場。
針對這兩條路徑,分別誕生了兩種產品:SoC與SiP。SoC是摩爾定律繼續往下走下的產物,而SiP則是實現超越摩爾定律的重要路徑。兩者都是實現在芯片層面上實現小型化和微型化系統的產物。
SoC與SIP是極為相似,兩者均將一個包含邏輯組件、內存組件,甚至包含被動組件的系統,整合在一個單位中。SoC是從設計的角度出發,是將系統所需的組件高度集成到一塊芯片上。SiP是從封裝的立場出發,對不同芯片進行并排或疊加的封裝方式,將多個具有不同功能的有源電子元件與可選無源器件,以及諸如MEMS或者光學器件等其他器件優先組裝到一起,實現一定功能的單個標準封裝件。
從集成度而言,一般情況下,SoC只集成AP之類的邏輯系統,而SiP集成了AP+mobile DDR,某種程度上說SIP=SoC+DDR,隨著將來集成度越來越高,emmc也很有可能會集成到SiP中。
從封裝發展的角度來看,因電子產品在體積、處理速度或電性特性各方面的需求考量下,SoC曾經被確立為未來電子產品設計的關鍵與發展方向。但隨著近年來SoC生產成本越來越高,頻頻遭遇技術障礙,造成SoC的發展面臨瓶頸,進而使SiP的發展越來越被業界重視。
1.2. SiP——超越摩爾定律的必然選擇路徑
摩爾定律確保了芯片性能的不斷提升。眾所周知,摩爾定律是半導體行業發展的“圣經”。在硅基半導體上,每18個月實現晶體管的特征尺寸縮小一半,性能提升一倍。在性能提升的同時,帶來成本的下降,這使得半導體廠商有足夠的動力去實現半導體特征尺寸的縮小。這其中,處理器芯片和存儲芯片是最遵從摩爾定律的兩類芯片。以Intel為例,每一代的產品完美地遵循摩爾定律。在芯片層面上,摩爾定律促進了性能的不斷往前推進。
PCB板并不遵從摩爾定律,是整個系統性能提升的瓶頸。與芯片規模不斷縮小相對應的是,PCB板這些年并沒有發生太大變化。舉例而言,PCB主板的標準最小線寬從十年前就是3 mil(大約75 um),到今天還是3 mil,幾乎沒有進步。畢竟,PCB并不遵從摩爾定律。因為PCB的限制,使得整個系統的性能提升遇到了瓶頸。比如,由于PCB線寬都沒變化,所以處理器和內存之間的連線密度也保持不變。換句話說,在處理器和內存封裝大小不大變的情況下,處理器和內存之間的連線數量不會顯著變化。而內存的帶寬等于內存接口位寬 乘以內存接口操作頻率。內存輸出位寬等于處理器和內存之間的連線數量,在十年間受到PCB板工藝的限制一直是64bit沒有發生變化。所以想提升內存帶寬只有提高內存接口操作頻率。這就限制了整個系統的性能提升。
SIP是解決系統桎梏的勝負手。把多個半導體芯片和無源器件封裝在同一個芯片內,組成一個系統級的芯片,而不再用PCB板來作為承載芯片連接之間的載體,可以解決因為PCB自身的先天不足帶來系統性能遇到瓶頸的問題。以處理器和存儲芯片舉例,因為系統級封裝內部走線的密度可以遠高于PCB走線密度,從而解決PCB線寬帶來的系統瓶頸。舉例而言,因為存儲器芯片和處理器芯片可以通過穿孔的方式連接在一起,不再受PCB線寬的限制,從而可以實現數據帶寬在接口帶寬上的提升。
我們認為,SiP不僅是簡單地將芯片集成在一起。SiP還具有開發周期短;功能更多;功耗更低,性能更優良、成本價格更低,體積更小,質量更輕等優點,總結如下:
SiP工藝分析
SIP 封裝制程按照芯片與基板的連接方式可分為引線鍵合封裝和倒裝焊兩種。
2.1.引線鍵合封裝工藝
引線鍵合封裝工藝主要流程如下:
圓片→圓片減薄→圓片切割→芯片粘結→引線鍵合→等離子清洗→液態密封劑灌封→裝配焊料球→回流焊→表面打標→分離→最終檢查→測試→包裝。
圓片減薄
圓片減薄是指從圓片背面采用機械或化學機械(CMP)方式進行研磨,將圓片減薄到適合封裝的程度。由于圓片的尺寸越來越大,為了增加圓片的機械強度,防止在加工過程中發生變形、開裂,其厚度也一直在增加。但是隨著系統朝輕薄短小的方向發展,芯片封裝后模塊的厚度變得越來越薄,因此在封裝之前一定要將圓片的厚度減薄到可以接受的程度,以滿足芯片裝配的要求。
圓片切割
圓片減薄后,可以進行劃片。較老式的劃片機是手動操作的,現在一般的劃片機都已實現全自動化。無論是部分劃線還是完全分割硅片,目前均采用鋸刀,因為它劃出的邊緣整齊,很少有碎屑和裂口產生。
芯片粘結
已切割下來的芯片要貼裝到框架的中間焊盤上。焊盤的尺寸要和芯片大小相匹配,若焊盤尺寸太大,則會導致引線跨度太大,在轉移成型過程中會由于流動產生的應力而造成引線彎曲及芯片位移現象。貼裝的方式可以是用軟焊料(指 Pb-Sn 合金,尤其是含 Sn 的合金)、Au-Si 低共熔合金等焊接到基板上,在塑料封裝中最常用的方法是使用聚合物粘結劑粘貼到金屬框架上。
引線鍵合
在塑料封裝中使用的引線主要是金線,其直徑一般為0.025mm~0.032mm。引線的長度常在1.5mm~3mm之間,而弧圈的高度可比芯片所在平面高 0.75mm。
鍵合技術有熱壓焊、熱超聲焊等。這些技術優點是容易形成球形(即焊球技術),并防止金線氧化。為了降低成本,也在研究用其他金屬絲,如鋁、銅、銀、鈀等來替代金絲鍵合。熱壓焊的條件是兩種金屬表面緊緊接觸,控制時間、溫度、壓力,使得兩種金屬發生連接。表面粗糙(不平整)、有氧化層形成或是有化學沾污、吸潮等都會影響到鍵合效果,降低鍵合強度。熱壓焊的溫度在 300℃~400℃,時間一般為 40ms(通常,加上尋找鍵合位置等程序,鍵合速度是每秒二線)。超聲焊的優點是可避免高溫,因為它用20kHz~60kHz的超聲振動提供焊接所需的能量,所以焊接溫度可以降低一些。將熱和超聲能量同時用于鍵合,就是所謂的熱超聲焊。與熱壓焊相比,熱超聲焊[敏感詞]的優點是將鍵合溫度從 350℃降到250℃左右(也有人認為可以用100℃~150℃的條件),這可以大大降低在鋁焊盤上形成 Au-Al 金屬間化合物的可能性,延長器件壽命,同時降低了電路參數的漂移。在引線鍵合方面的改進主要是因為需要越來越薄的封裝,有些超薄封裝的厚度僅有0.4mm 左右。所以引線環(loop)從一般的200 μ m~300 μ m減小到100μm~125μm,這樣引線張力就很大,繃得很緊。另外,在基片上的引線焊盤外圍通常有兩條環狀電源 / 地線,鍵合時要防止金線與其短路,其最小間隙必須>625 μ m,要求鍵合引線必須具有高的線性度和良好的弧形。
等離子清洗
清洗的重要作用之一是提高膜的附著力,如在Si 襯底上沉積 Au 膜,經 Ar 等離子體處理掉表面的碳氫化合物和其他污染物,明顯改善了 Au 的附著力。等離子體處理后的基體表面,會留下一層含氟化物的灰色物質,可用溶液去掉。同時清洗也有利于改善表面黏著性和潤濕性。
液態密封劑灌封
將已貼裝好芯片并完成引線鍵合的框架帶置于模具中,將塑封料的預成型塊在預熱爐中加熱(預熱溫度在 90℃~95℃之間),然后放進轉移成型機的轉移罐中。在轉移成型活塞的壓力之下,塑封料被擠壓到澆道中,并經過澆口注入模腔(在整個過程中,模具溫度保持在 170℃~175℃左右)。塑封料在模具中快速固化,經過一段時間的保壓,使得模塊達到一定的硬度,然后用頂桿頂出模塊,成型過程就完成了。對于大多數塑封料來說,在模具中保壓幾分鐘后,模塊的硬度足可以達到允許頂出的程度,但是聚合物的固化(聚合)并未全部完成。由于材料的聚合度(固化程度)強烈影響材料的玻璃化轉變溫度及熱應力,所以促使材料全部固化以達到一個穩定的狀態,對于提高器件可靠性是十分重要的,后固化就是為了提高塑封料的聚合度而必需的工藝步驟,一般后固化條件為 170℃~175℃,2h~4h。
液態密封劑灌封
目前業內采用的植球方法有兩種:“錫膏”+“錫球”和“助焊膏”+ “錫球”。“錫膏”+“錫球”植球方法是業界公認的[敏感詞]標準的植球法,用這種方法植出的球焊接性好、光澤好,熔錫過程不會出現焊球偏置現象,較易控制,具體做法就是先把錫膏印刷到 BGA 的焊盤上,再用植球機或絲網印刷在上面加上一定大小的錫球,這時錫膏起的作用就是粘住錫球,并在加溫的時候讓錫球的接觸面更大,使錫球的受熱更快更全面,使錫球熔錫后與焊盤焊接性更好并減少虛焊的可能。
表面打標
打標就是在封裝模塊的頂表面印上去不掉的、字跡清楚的字母和標識,包括制造商的信息、國家、器件代碼等,主要是為了識別并可跟蹤。打碼的方法有多種,其中最常用的是印碼方法,而它又包括油墨印碼和激光印碼二種。
分離
為了提高生產效率和節約材料,大多數 SIP 的組裝工作都是以陣列組合的方式進行,在完成模塑與測試工序以后進行劃分,分割成為單個的器件。劃分分割可以采用鋸開或者沖壓工藝,鋸開工藝靈活性比較強,也不需要多少專用工具,沖壓工藝則生產效率比較高、成本較低,但是需要使用專門的工具。
2.2.倒裝焊工藝
和引線鍵合工藝相比較倒裝焊工藝具有以下幾個優點:
(1)倒裝焊技術克服了引線鍵合焊盤中心距極限的問題;
(2)在芯片的電源 /地線分布設計上給電子設計師提供了更多的便利;
(3)通過縮短互聯長度,減小 RC 延遲,為高頻率、大功率器件提供更完善的信號;
(4)熱性能優良,芯片背面可安裝散熱器;
(5)可靠性高,由于芯片下填料的作用,使封裝抗疲勞壽命增強;
(6)便于返修。
以下是倒裝焊的工藝流程(與引線鍵合相同的工序部分不再進行單獨說明):圓片→焊盤再分布→圓片減薄、制作凸點→圓片切割→倒裝鍵合、下填充→包封→裝配焊料球→回流焊→表面打標→分離→最終檢查→測試→包裝。
焊盤再分布
為了增加引線間距并滿足倒裝焊工藝的要求,需要對芯片的引線進行再分布。
制作凸點
焊盤再分布完成之后,需要在芯片上的焊盤添加凸點,焊料凸點制作技術可采用電鍍法、化學鍍法、蒸發法、置球法和焊膏印刷法。目前仍以電鍍法最為廣泛,其次是焊膏印刷法。
倒裝鍵合、下填充
在整個芯片鍵合表面按柵陣形狀布置好焊料凸點后,芯片以倒扣方式安裝在封裝基板上,通過凸點與基板上的焊盤實現電氣連接,取代了WB和TAB 在周邊布置端子的連接方式。倒裝鍵合完畢后,在芯片與基板間用環氧樹脂進行填充,可以減少施加在凸點上的熱應力和機械應力,比不進行填充的可靠性提高了1到2個數量級。
SiP——為應用而生
3.1.主要應用領域
SiP的應用非常廣泛,主要包括:無線通訊、汽車電子、醫療電子、計算機、軍用電子等。
應用最為廣泛的無線通訊領域。SiP在無線通信領域的應用最早,也是應用最為廣泛的領域。在無線通訊領域,對于功能傳輸效率、噪聲、體積、重量以及成本等多方面要求越來越高,迫使無線通訊向低成本、便攜式、多功能和高性能等方向發展。SiP是理想的解決方案,綜合了現有的芯核資源和半導體生產工藝的優勢,降低成本,縮短上市時間,同時克服了SOC中諸如工藝兼容、信號混合、噪聲干擾、電磁干擾等難度。手機中的射頻功放,集成了頻功放、功率控制及收發轉換開關等功能,完整的在SiP中得到了解決。
汽車電子是SiP的重要應用場景。汽車電子里的SiP應用正在逐漸增加。以發動機控制單元(ECU)舉例,ECU由微處理器(CPU)、存儲器(ROM、RAM)、輸入/輸出接口(I/O)、模數轉換器(A/D)以及整形、驅動等大規模集成電路組成。各類型的芯片之間工藝不同,目前較多采用SiP的方式將芯片整合在一起成為完整的控制系統。另外,汽車防抱死系統(ABS)、燃油噴射控制系統、安全氣囊電子系統、方向盤控制系統、輪胎低氣壓報警系統等各個單元,采用SiP的形式也在不斷增多。此外,SIP技術在快速增長的車載辦公系統和娛樂系統中也獲得了成功的應用。
醫療電子需要可靠性和小尺寸相結合,同時兼具功能性和壽命。在該領域的典型應用為可植入式電子醫療器件,比如膠囊式內窺鏡。內窺鏡由光學鏡頭、圖像處理芯片、射頻信號發射器、天線、電池等組成。其中圖像處理芯片屬于數字芯片、射頻信號發射器則為模擬芯片、天線則為無源器件。將這些器件集中封裝在一個SiP之內,可以完美地解決性能和小型化的要求。
SiP在計算機領域的應用主要來自于將處理器和存儲器集成在一起。以GPU舉例,通常包括圖形計算芯片和SDRAM。而兩者的封裝方式并不相同。圖形計算方面都采用標準的塑封焊球陣列多芯片組件方式封裝,而這種方式對于SDRAM并不適合。因此需要將兩種類型的芯片分別封裝之后,再以SiP的形式封裝在一起。
SiP在其他消費類電子中也有很多應用。這其中包括了ISP(圖像處理芯片)、藍牙芯片等。ISP是數碼相機、掃描儀、攝像頭、玩具等電子產品的核心器件,其通過光電轉換,將光學信號轉換成數字信號,然后實現圖像的處理、顯示和存儲。圖像傳感器包括一系列不同類型的元器件,如CCD、COMS圖像傳感器、接觸圖像傳感器、電荷載入器件、光學二極管陣列、非晶硅傳感器等,SiP技術無疑是一種理想的封裝技術解決方案。
藍牙系統一般由無線部分、鏈路控制部分、鏈路管理支持部分和主終端接口組成,SiP技術可以使藍牙做得越來越小迎合了市場的需求,從而大力推動了藍牙技術的應用。SiP完成了在一個超小型封裝內集成了藍牙無線技術功能所需的全部原件(無線電、基帶處理器、ROM、濾波器及其他分立元件)。
[敏感詞]電子產品具有高性能、小型化、多品種和小批量等特點,SiP技術順應了[敏感詞]電子的應用需求,因此在這一技術領域具有廣泛的應用市場和發展前景。SiP產品涉及衛星、運載火箭、飛機、導彈、雷達、巨型計算機等[敏感詞]裝備,[敏感詞]典型性的應用產品是各種頻段的收發組件。
3.2.SiP——為智能手機量身定制
手機輕薄化帶來SiP需求增長。手機是SiP封裝[敏感詞]的市場。隨著智能手機越做越輕薄,對于SiP的需求自然水漲船高。從2011-2015,各個品牌的手機厚度都在不斷縮減。輕薄化對組裝部件的厚度自然有越來越高的要求。以iPhone 6s為例,已大幅縮減PCB的使用量,很多芯片元件都會做到SiP模塊里,而到了iPhone8,有可能是蘋果[敏感詞]款全機采用SiP的手機。這意味著,iPhone8一方面可以做得更加輕薄,另一方面會有更多的空間容納其他功能模塊,比如說更強大的攝像頭、揚聲器,以及電池。
從蘋果產品看SiP應用。蘋果是堅定看好SiP應用的公司,蘋果在之前Apple Watch上就已經使用了SiP封裝。
除了手表以外,蘋果手機中使用SiP的顆數也在逐漸增多。列舉有:觸控芯片,指紋識別芯片,RFPA等。
觸控芯片。在Iphone6中,觸控芯片有兩顆,分別由Broadcom和TI提供,而在6S中,將這兩顆封在了同一個package內,實現了SiP的封裝。而未來會進一步將TDDI整個都封裝在一起。iPhone6s中展示了新一代的3D Touch技術。觸控感應檢測可以穿透絕緣材料外殼,通過檢測人體手指帶來的電壓變化,判斷出人體手指的觸摸動作,從而實現不同的功能。而觸控芯片就是要采集接觸點的電壓值,將這些電極電壓信號經過處理轉換成坐標信號,并根據坐標信號控制手機做出相應功能的反應,從而實現其控制功能。3D Touch的出現,對觸控模組的處理能力和性能提出了更高的要求,其復雜結構要求觸控芯片采用SiP組裝,觸覺反饋功能加強其操作友好性。
指紋識別同樣采用了SiP封裝。將傳感器和控制芯片封裝在一起,從iPhone 5開始,就采取了相類似的技術。
RFPA模塊。手機中的RFPA是最常用SiP形式的。iPhone 6S也同樣不例外,在iPhone 6S中,有多顆RFPA芯片,都是采用了SiP。
按照蘋果的習慣,所有應用成熟的技術會傳給下一代,我們判斷,即將問世的蘋果iPhone7會更多地采取SiP技術,而未來的iPhone7s、iPhone8會更全面,更多程度的利用SiP技術,來實現內部空間的壓縮。
SIP封裝技術采取多種裸芯片或模塊進行排列組裝,若就排列方式進行區分可大體分為平面式2D封裝和3D封裝的結構。相對于2D封裝,采用堆疊的3D封裝技術又可以增加使用晶圓或模塊的數量,從而在垂直方向上增加了可放置晶圓的層數,進一步增強SIP技術的功能整合能力。而內部接合技術可以是單純的線鍵合(Wire Bonding),也可使用覆晶接合(Flip Chip),也可二者混用。
從目前業界SIP的設計類型和結構區分,SIP可分為三類。
2D SIP
此類封裝是在同一個封裝基板上將芯片一個挨一個的排列以二維的模式封裝在一個封裝體內。
堆疊SIP
此類封裝是在一個封裝中采用物理的方法將兩個或多個芯片堆疊整合起來進行封裝。
3D SIP
此類封裝是在2D封裝的基礎上,把多個芯片、封裝芯片、多芯片甚至圓片進行疊層互聯,構成立體封裝,這種結構也稱作疊層型3D封裝。
另外,除了2D與3D的封裝結構外,還可以采用多功能性基板整合組件的方式——將不同組件內藏于多功能基板中,達到功能整合的目的。不同的芯片排列方式,與不同的內部接合技術搭配,使SIP的封裝形態產生多樣化的組合,并可依照客戶或產品的需求加以客制化或彈性生產。
SIP的主流封裝形式是BGA,但這并不是說具備傳統先進封裝技術就掌握了SIP技術。
對于電路設計而言,三維芯片封裝將有多個裸片堆疊,如此復雜的封裝設計將帶來很多問題:比如多芯片集成在一個封裝內,芯片如何堆疊起來;再比如復雜的走線需要多層基板,用傳統的工具很難布通走線;還有走線之間的間距,等長設計,差分對設計等問題。
此外,隨著模塊復雜度的增加和工作頻率(時鐘頻率或載波頻率)的提高,系統設計的難度會不斷增加,設計者除具備必要的設計經驗外,系統性能的數值仿真也是必不可少的設計環節。
免責聲明:本文轉載自“集成電路前沿”,本文僅代表作者個人觀點,不代表薩科微及行業觀點,只為轉載與分享,支持保護知識產權,轉載請注明原出處及作者,如有侵權請聯系我們刪除。
公司電話:+86-0755-83044319
傳真/FAX:+86-0755-83975897
郵箱:1615456225@qq.com
QQ:3518641314 李經理
QQ:332496225 丘經理
地址:深圳市龍華新區民治大道1079號展滔科技大廈C座809室
友情鏈接:站點地圖 薩科微官方微博 立創商城-薩科微專賣 金航標官網 金航標英文站
Copyright ?2015-2024 深圳薩科微半導體有限公司 版權所有 粵ICP備20017602號-1